Chapter 6 – Normal Distribution CurvesAnswer Key6.1Standard Deviation of a Normal Distribution

Answers

- 1. "The typical measurement is approximately 65 kilograms, give or take 2 kilograms."
- 2. "The typical measurement is approximately 25.0 miles per hour, give or take 0.5 miles per hour."
- 3. "The typical measurement is approximately 375 feet, give or take 5 feet."
- 4. The values within 1 standard deviation of the mean are from 16.8 0.7 years to 16.8 + 0.7 years, or from 16.1 years to 17.5 years.
- 5. The values within 2 standard deviations of the mean are from $16.8 (2 \times 0.7)$ years to $16.8 + (2 \times 0.7)$ years, or from 15.4 years to 18.2 years.
- 6. The values within 3 standard deviations of the mean are from $16.8 (3 \times 0.7)$ years to $16.8 + (3 \times 0.7)$ years, or from 14.7 years to 18.9 years.
- 7. The graph should appear as follows:

8. The graph should appear as follows:

9. The graph should appear as follows:

10 Answers will vary, but the actual percentages are 68% for the values within 1 standard deviation of the mean, 95% for the values within 2 standard deviations of the mean, and 99.7% for the values within 3 standard deviations of the mean.

6.2 Variance of a Data Set

Answers

1. Answer:

```
TABLE 6.1:
```

	Data (x)	Mean (μ)	Data – Mean (x –	Square of Data -
			μ)	Mean $(x - \mu)^2$
	5	6.375	-1.375	1.8906
	8	6.375	1.625	2.6406
	9	6.375	2.625	6.8906
	10	6.375	3.625	13.1406
	4	6.375	-2.375	5.6406
	3	6.375	-3.375	11.3906
	7	6.375	0.625	0.3906
	5	6.375	-1.375	1.8906
Σ	51			43.8748

$$\mu = \frac{\sum x}{n} = \frac{51}{8} = 6.375$$
$$\sigma^{2} = \frac{\sum (x - \mu)^{2}}{n}$$
$$\sigma^{2} = \frac{43.8748}{8}$$
$$\sigma^{2} = 5.48435$$

2. Answer:

$$\bar{x} = \frac{\sum x}{n} = \frac{51}{8} = 6.375$$

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}$$

$$s^{2} = \frac{43.8748}{7}$$

$$s^{2} = 6.27$$

3. Answer:

TABLE 6.2:

Data (x)	Mean (μ)	Data – Mean (x –	Square of Data -
		μ)	Mean $(x - \mu)^2$
11	14.7	-3.7	13.69
15	14.7	0.3	0.09
16	14.7	1.3	1.69
12	14.7	-2.7	7.29
10		1.0	10.10

	19	14.7	4.3	18.49
	17	14.7	2.3	5.29
	14	14.7	-0.7	0.49
	18	14.7	3.3	10.89
	15	14.7	0.3	0.09
	10	14.7	-4.7	22.09
Σ	147			80.1

$$\mu = \frac{\sum x}{n} = \frac{147}{10} = 14.7$$
$$\sigma^{2} = \frac{\sum (x - \mu)^{2}}{n}$$
$$\sigma^{2} = \frac{80.1}{10}$$
$$\sigma^{2} = 8.01$$

4. Answer: $\sum r = 147$

$$\bar{x} = \frac{\sum x}{n} = \frac{147}{10} = 14.7$$

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}$$

$$s^{2} = \frac{80.1}{9}$$

$$s^{2} = 8.9$$

5. Answer:

TABLE 6.3:

	Data (x)	Mean (μ)	Data – Mean (x –	Square of Data -
			μ)	Mean $(x-\mu)^2$
	55	56.2	-1.2	1.44
	54	56.2	-2.2	4.84
	48	56.2	-8.2	67.24
	52	56.2	-4.2	17.64
	69	56.2	12.8	163.84
	60	56.2	3.8	14.44
	47	56.2	-9.2	84.64
	66	56.2	9.8	96.04
	50	56.2	-6.2	38.44
	61	56.2	4.8	23.04
Σ	562			511.6

$$\mu = \frac{\sum x}{n} = \frac{562}{10} = 56.2$$
$$\sigma^2 = \frac{\sum (x - \mu)^2}{n}$$

 $\sigma^2 = \frac{511.6}{10}$ $\sigma^2 = 51.16$

6. Answer:

$$\bar{x} = \frac{\sum x}{n} = \frac{562}{10} = 56.2$$

 $s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$
 $s^2 = \frac{511.6}{9}$
 $s^2 = 56.84$

7. Answer:

TABLE 6.4:

	Data (x)	Mean (\bar{x})	Data – Mean (x –	Square of Data -
			x)	Mean $(x - \bar{x})^2$
	26	25.5	0.5	0.25
	30	25.5	4.5	20.25
	20	25.5	-5.5	30.25
	27	25.5	1.5	2.25
	23	25.5	-2.5	6.25
	33	25.5	7.5	56.25
	19	25.5	-6.5	42.25
	26	25.5	0.5	0.25
Σ	204			158

$$\bar{x} = \frac{\sum x}{n} = \frac{204}{8} = 25.5$$

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}$$

$$s^{2} = \frac{158}{7}$$

$$s^{2} = 22.57$$

8. Answer: $\mu = \frac{\sum x}{n} = \frac{204}{8} = 25.5$ $\sigma^2 = \frac{\sum (x - \mu)^2}{n}$ $\sigma^2 = \frac{158}{8}$

$$\sigma^2 = \frac{158}{2}$$

9. Answer:

	Data (x)	Mean (\bar{x})	Data – Mean $(x - \bar{x})$	Square of Data – Mean $(x - \bar{x})^2$
	85	94.25	-9.25	85.5625
	99	94.25	4.75	22.5625
	89	94.25	-5.25	27.5625
	90	94.25	-4.25	18.0625
	104	94.25	9.75	95.0625
	82	94.25	-12.25	150.0625
	95	94.25	0.75	0.5625
	110	94.25	15.75	248.0625
Σ	754			647.5

$$\bar{x} = \frac{\sum x}{n} = \frac{754}{8} = 94.25$$
$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}$$
$$s^{2} = \frac{647.5}{7}$$
$$s^{2} = 92.5$$

10. Answer:

$$\mu = \frac{\sum x}{n} = \frac{754}{8} = 94.25$$
$$\sigma^{2} = \frac{\sum (x - \mu)^{2}}{n}$$
$$\sigma^{2} = \frac{647.5}{8}$$
$$\sigma^{2} = 80.9375$$

6.3 **Standard Deviation of a Data Set**

Answers

1. Answer:

TABLE 6.6:

Data (x)	Mean (μ)	Data – Mean (x –	Square of Data -
		μ)	Mean $(x - \mu)^2$
71	74.4	-3.4	11.56
73	74.4	-1.4	1.96
77	74.4	2.6	6.76
69	74.4	-5.4	29.16
80	74.4	5.6	31.36
67	74.4	-7.4	54.76

TABLE 6.5:

	07	/ 7. 7	- /	54.70	
	78	74.4	3.6	12.96	
	77	74.4	2.6	6.76	
	70	74.4	-4.4	19.36	
	82	74.4	7.6	57.76	
Σ	744			232.4	

$$\mu = \frac{\sum x}{n} = \frac{744}{10} = 74.4$$

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{n}}$$

$$\sigma = \sqrt{\frac{232.4}{10}}$$

$$\sigma = \sqrt{23.24}$$

$$\sigma = 4.82$$

2. Answer:

	TABLE 0.7:				
	Data (x)	Mean (\bar{x})	Data – Mean $(x - \bar{x})$	Square of Data – Mean $(x - \bar{x})^2$	
	55	57	-2	4	
	48	57	-9	81	
	65	57	8	64	
	70	57	13	169	
	48	57	-9	81	
	59	57	2	4	
	67	57	10	100	
	44	57	-13	169	
Σ	456			672	

$$\bar{x} = \frac{\sum x}{n} = \frac{456}{8} = 57$$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

$$s = \sqrt{\frac{672}{7}}$$

$$s = \sqrt{96}$$

$$s = 9.80$$

- 3. B
- 4. D
- 5. B
- 6. D 7. C
- 8. B
- 9. Answer:

- a. 68% of the volumes can be found between 7.4 oz and 7.6 oz.
- b. 95% of the volumes can be found between 7.3 oz and 7.7 oz.
- c. 99.7% of the volumes can be found between 7.2 oz and 7.8 oz.

a. 68% of the heights can be found between 51" and 61".

b. 95% of the heights can be found between 46" and 66".

c. 99.7% of the heights can be found between 41" and 71".

6.4 **Applications of Variance and Standard Deviation**

Answers

1. D

- 2. A
- 3. D
- 4. B

5. C

1-Var Stats x=40.4 Σx=202 Σx²=8242 Sx=4.50555213 σx=4.029888336 ↓n=5

The variance is 4.0298883362 = 16.24.

The variance is 9.1487704092 = 83.7.

8. B

7. A

1-Var Stats X=37.75 Σx=151 Σx²=5802.3 Sx=5.832380875 σx=5.050990002 ↓n=4

9. Answer:

a. The mean is 74.86.

b. The standard deviation is 14.63.

The variance is 14.635869562 = 214.21.

d. The normal distribution curve is shown below:

10.Answer:

c.

- a. The mean is 76.46.
- b. The standard deviation is 14.01.
- The variance is 14.014362882 = 196.40.
- d. The normal distribution curve is shown below:

٦

c.

6.5 **Empirical Rule**

Answers

- 1. The answer can be calculated as follows: 34% + 34% + 13.5% = 81.5%
- 2. The answer can be calculated as follows: 2.35% + 13.5% + 34% + 34% = 83.85%
- 3. The answer can be calculated as follows: 2.35% + 0.15% = 2.5%
- 4. The answer can be calculated as follows: 13.5% + 34% + 34% + 13.5% + 2.35% = 97.35%
- 5. The answer can be calculated as follows: 2.35% + 13.5% + 34% = 49.85%
- 6. The answer can be calculated as follows: 13.5% + 2.35% + 0.15% = 16%
- 7. The answer can be calculated as follows: 34% + 13.5% = 47.5%
- 8. a. The percentage of students waiting more than 11.5 minutes would be 68% + 13.5% + 2.35% + 0.15% = 84% of the students surveyed. 84% of 200 students = $0.84 \times 200 = 168$ students
- b. The percentage of students waiting more than 18.5 minutes would be 13.5 + 2.35 + 0.15 = 16% of the students surveyed. 16% of 200 students = $0.16 \times 200 = 32$ students

c. The percentage of students waiting between 11.5 and 18.5 minutes would be 68% of the students surveyed 68% of 200 students = $0.68 \times 200 = 136$ students

- 9. a. The percentage of babies weighing more than 7.3 lbs would be 13.5 + 2.35 + 0.15 = 16% of the babies in the survey. 16% of 350 babies = $0.16 \times 350 = 56$ babies
- b. The percentage of babies weighing more than 7.8 lbs would be 2.35 + 0.15 = 2.5% of the babies in the survey. 2.5% of 350 babies = $0.025 \times 350 = 9$ babies
- c. The percentage of babies weighing between 6.3 and 7.8 lbs minutes would be 68% + 13.5% = 81.5% of the babies in the survey. 81.5% of 350 babies = $0.815 \times 350 = 285$ babies

You can use the data from the 1-Var Stats calculation to draw the normal distribution curve.

The range of the differences in heights of the seedlings for the middle 68% of the data is 5.3 inches to 10.5 inches.

CK-12 Basic Probability and Statistics Concepts 14