2.1 Inductive Reasoning from Patterns

- 1. 4th figure: 9 dots, 10th figure: 21dots
- 2. 4th figure: 20 dots, 10th figure: 110 dots
- 3. 4th figure: 13 dots, 10th figure: 37 dots
- 4. a)

- b) There are two more points in each star than its figure number.
- 5. a) 10 triangles
 - b) 48
- 6. 20, 23, 26
- 7. -19, -24, -29
- 8. 64, 128, 256
- 9. 12, 1, -10
- 10. **Possible Answers** -16, 0, 32 or -12, 0, -16
- 11. $\frac{6}{7}, \frac{7}{8}, \frac{8}{9}$
- 12. $\frac{12}{23}, \frac{14}{27}, \frac{16}{31}$
- 13. 21, -25, 29

- 14. 38, 57; the amount that is added is increasing by two with each term. From the first to the second term 3 was added, then 5, then 7, then 9, etc.
- 15. 48, 67; the amount that is added is increasing by two with each term. From the first to the second term 5 was added, then 7, then 9, then 11, etc.
- 16. 216, 343; the term number cubed; 1^3 , 2^3 , 3^3 , 4^3 , ..., n^3 .
- 17. 8, 13; add the previous two terms together to get the next term. This particular sequence is called a *Fibonacci* sequence.

$$1 + 1 = 2$$
, $1 + 2 = 3$, $2 + 3 = 5$, $3 + 5 = 8$,

2.2 Deductive Reasoning

- 1. I am a smart person. Law of Detachment
- 2. No conclusion, the fact that Ann is driving today has nothing to do with the previous statement.
- 3. \triangle ABC is equilateral. Law of Detachment
- 4. If North wins, then East loses. Law of Syllogism.
- 5. If z > 5, then y > 7. Law of Syllogism.
- 6. I am not cold. Law of Contrapositive.
- 7. No conclusion. You cannot say "I don't need an umbrella," because that would be completing the inverse of the first statement.
- 8. If a shape is a circle, then we don't need to study it. Law of Syllogism.
- 9. You don't text while driving. Law of Contrapositive.
- 10. It is sunny outside. Law of Detachment.
- 11. You are not wearing sunglasses. Law of Contrapositive; you can think of "cloudy" as "not sunny."

- 12. Switch the first statement to be "If my mom asks me to, then I will clean my room." The conclusion would then be: My mom didn't ask me to. Law of Contrapositive.
- 13. This is a logical argument, but it doesn't make sense because we know that circles exist.

 $p \rightarrow q$

 $q \rightarrow r$

 $r \rightarrow s$

 $s \rightarrow t$

 $\therefore p \rightarrow t$

14. Law of Detachment.

 $p \rightarrow q$

р

∴ q

15. Law of Contrapositive.

 $p \rightarrow q$

~ q

∴~ p

2.3 If-Then Statements

Answers

1. <u>Hypothesis</u>: 5 divides evenly into x.

Conclusion: x ends in 0 or 5.

2. Hypothesis: A triangle has three congruent sides.

Conclusion: It is an equilateral triangle.

3. Here, the "if" is in the middle of the statement, making the hypothesis the second half.

Hypothesis: Three points lie in the same plane.

<u>Conclusion</u>: The three points are coplanar.

4. Hypothesis: x = 3.

Conclusion: $\chi^2 = 9$.

5. Hypothesis: You take yoga.

Conclusion: You are relaxed.

6. Hypothesis: You are a baseball player.

Conclusion: You wear a hat.

7. Hypothesis: I am 16 years old.

Conclusion: I will learn how to drive.

8. <u>Hypothesis</u>: You do your homework.

Conclusion: You can watch TV.

Answer Key

9. <u>Hypothesis</u>: The lines are parallel.

Conclusion: Alternate interior angles are congruent.

10. <u>Hypothesis</u>: You are a kid.

Conclusion: You like ice cream.

2.4 Converse, Inverse, and Contrapositive

- 1. Not necessarily, A, B, and C need to be collinear in order for B to be a midpoint.
- 2. If B is the midpoint of \overline{AC} , then AB = 5 and BC = 5. This could be true, but we don't know the length of AC. AB = BC, but we cannot say they are 5 without knowing the length of AC.
- 3. If $AB \neq 5$ and $BC \neq 5$, then B is not the midpoint of \overline{AC} . Again, this could be true, but we don't know AC. Also, A, B and C might not be collinear.
- 4. If $AB \neq 5$ and $BC \neq 5$, then B is not the midpoint of \overline{AC} . It is the same as #3.
- If an angle is less than 90°, then it is acute. *True*.
 Biconditional: An angle is acute if and only if it is less than 90°.
- 6. If you are sun burnt, then you are at the beach. False, you could be anywhere there is sun (amusement park, baseball game, on a boat, etc).
- 7. If x+3>7, then x>4. True. Biconditional: x+3>7 if and only if x>4.
- 8. If a U.S. citizen can vote, then he or she is 18 or more years old.

 If a U.S. citizen is 18 or more years old, then he or she can vote.
- If a whole number is prime, then its factors are 1 and itself.
 If a whole number's factors are only 1 and itself, then it is prime.
- 10. If 2x = 18, then x = 9. If x = 9, then 2x = 18.

2.5 Conjectures and Counterexamples

- 1. n = 1 would be a counterexample because $1^2 > 1$. Recall that a whole number is 0, 1, 2, 3, ... n, so 0 could also be a counterexample.
- 2. Counterexamples include: 21, 51, 81, 121, and 151
- 3. $\frac{4}{3}$ is one counterexample. Any positive improper fraction (where the numerator is greater than the denominator) could be a counterexample.
- 4. A triangle is a counterexample.
- 5. A girl that doesn't like ice cream would be a counterexample.
- 6. Not everyone takes choir in high school.
- 7. Obtuse angles do not have complementary angles.
- 8. 13, 14, 15 year-olds are teenagers and cannot drive yet.
- 9. Any negative integer could be a counterexample.
- 10. Equations can have any real number as a solution.

2.6 Properties of Equality and Congruence

Answers

1.
$$3x + 11 = -16$$

$$3x = -27$$

Subtraction PoE (subtract 11 from both sides)

$$x = -9$$

Division PoE (divide both sides by 3)

2.
$$7x - 3 = 3x - 35$$

$$4x - 3 = -35$$

Subtraction PoE

$$4x = -32$$

Addition PoE

$$x = -8$$

Division PoE

3.
$$\frac{2}{3}g + 1 = 19$$

$$\frac{2}{3}$$
g = 18

Subtraction PoE

$$g = 27$$

Multiplication PoE

4.
$$\frac{1}{2}MN = 5$$

Multiplication PoE

5.
$$5m\angle ABC = 540^{\circ}$$

$$m\angle ABC = 108^{\circ}$$

Division PoE

6.
$$10b - 2(b + 3) = 5b$$

$$10b - 2b + 6 = 5b$$
 Distributive Property

7.
$$\frac{1}{4}y + \frac{5}{6} = \frac{1}{3}$$

$$3y + 10 = 4$$
 Multiplication PoE (multiplied everything by 12)

$$y = -2$$
 Division PoE

8.
$$\frac{1}{4}AB + \frac{1}{3}AB = 12 + \frac{1}{2}AB$$

9.
$$y + z = x + y$$

10.
$$CD = 5$$

11.
$$y-7=z+4$$

^{*}Students could have also found a common denominator and would have ended up with the same answer.*

2.7 Two-Column Proofs

Answers

1.

Statement	Reason
1. ∠ABC ≅ ∠DEF, ∠GHI ≅ ∠JKL	Given
2. <i>m</i> ∠ABC = <i>m</i> ∠DEF	≅ ∠s have = measures
$m \angle GHI = m \angle JKL$	
3. m ∠ABC + m ∠GHI = m ∠DEF + m ∠GHI	Addition PoE
4. $m\angle ABC + m\angle GHI = m\angle DEF + m\angle JKL$	Substitution

2.

Statement	Reason
1. M is the midpoint of \overline{AN} , N is the midpoint \overline{MB}	Given
2. AM = MN, MN = NB	Definition of a midpoint
3. $AM = NB$	Transitive

04-4	D
Statement	Reason
1. $\overline{AC} \perp \overline{BD}$, ∠1 ≅ ∠4	Given
2. m∠1 = m∠4	≅ angles have = measures
3. ∠ACB and ∠ACD are right angles	⊥ lines create right angles
4. m∠ACB = 90°	Definition of right angles
m∠ACD = 90°	
5. m∠1 + m∠2 = m∠ACB	Angle Addition Postulate
m∠3 + m∠4 = m∠ACD	
6. m∠1 + m∠2 = 90°	Substitution
m∠3 + m∠4 = 90°	
7. m∠1 + m∠2 = m∠3 + m∠4	Substitution
8. m∠1 + m∠2 = m∠3 + m∠1	Substitution
9. m∠2 = m∠3	Subtraction PoE
10. ∠2 ≅ ∠3	≅ angles have = measures

4.

Statement	Reason
1. ∠MLN≅∠OLP	Given
2. m∠MLN = m∠OLP	≅ angles have = measures
3. m∠MLO = m∠MLN + m∠NLO	Angle Addition Postulate
$m\angle NLP = m\angle NLO + m\angle OLP$	
4. m∠NLP = m∠NLO + m∠MLN	Substitution
5. m∠MLO = m∠NLP	Substitution
6. ∠NLP≅∠MLO	≅ angles have = measures

5.

Statement	Reason
1. $\overrightarrow{AE} \perp \overrightarrow{EC}$, $\overrightarrow{BE} \perp \overrightarrow{ED}$	Given
2. ∠BED is a right angle	⊥ lines create right angles
∠AEC is a right angle	
3. m∠BED = 90°	Definition of a right angle
m∠AEC = 90°	
4. m∠BED = m∠2 + m∠3	Angle Addition Postulate
m∠AEC = m∠1 + m∠3	
5. 90° = m∠2 + m∠3	Substitution
90° = m∠1 + m∠3	
6. m∠2 + m∠3 = m∠1 + m∠3	Substitution
7. m∠2 = m∠1	Subtraction PoE
8. ∠2 ≅ ∠1	≅ angles have = measures

Statement	Reason
1. ∠L is supplementary to ∠M	Given
∠P is supplementary to ∠O	
∠L ≅ ∠0	
2. m∠L = m∠O	≅ angles have = measures
3. m∠L + m∠M = 180°	Definition of supplementary angles
m∠P + m∠O = 180°	
4. m∠L + m∠M = m∠P + m∠O	Substitution
5. m∠L + m∠M = m∠P + m∠L	Substitution
6. m∠M = m∠P	Subtraction PoE
7. ∠M ≅ ∠P	≅ angles have = measures

7.

Statement	Reason
1. ∠1 ≅ ∠4	Given
2. m∠1 = m∠4	≅ angles have = measures
3. ∠1 and ∠2 are a linear pair	Given (by looking at the picture) could also
∠3 and ∠4 are a linear pair	be Definition of a Linear Pair
4. ∠1 and ∠2 are supplementary	Linear Pair Postulate
∠3 and ∠4 are supplementary	
5. m∠1 + m∠2 = 180°	Definition of supplementary angles
m∠3 + m∠4 = 180°	
6. m∠1 + m∠2 = m∠3 + m∠4	Substitution
7. m∠1 + m∠2 = m∠3 + m∠1	Substitution
8. m∠2 = m∠3	Subtraction PoE
9. ∠2 ≅ ∠3	≅ angles have = measures

8.

Statement	Reason
1. ∠C and ∠F are right angles	Given
2. m∠C = 90°, m∠F = 90°	Definition of a right angle
3. 90° + 90° = 180°	Addition of real numbers
4. m∠C + m∠F = 180°	Substitution

Statement	Reason
1. <i>I</i> ⊥ <i>m</i>	Given
2. ∠1 and ∠2 are right angles	⊥ lines create right angles.
3. ∠1 ≅ ∠2	Right Angles Theorem

10.

Statement	Reason
1. m∠1 = 90°	Given
2. ∠1 and ∠2 are a linear pair	Definition of a linear pair
3. ∠1 and ∠2 are supplementary	Linear Pair Postulate
4. m∠1 + m∠2 = 180°	Definition of supplementary angles
5. 90° + m∠2 = 180°	Substitution
6. m∠2 = 90°	Subtraction PoE

11.

Statement	Reason
1. <i>I</i> ⊥ <i>m</i>	Given
2. ∠1 and ∠2 make a right angle	⊥ lines create right angles
3. m∠1 + m∠2 = 90°	Definition of a right angle OR
	Substitution PoE
4. ∠1 and ∠2 are complementary	Definition of complementary angles

Statement	Reason
1. $l \perp m$, $\angle 2 \cong \angle 6$	Given
2. m∠2 = m∠6	≅ angles have = measures
3. ∠5 ≅ ∠2	Vertical Angles Theorem
4. m∠5 = m∠2	≅ angles have = measures
5. m∠5 = m∠6	Transitive